Part Number Hot Search : 
MC908GR UM2134 EPS13 MC333 MP5002S AD7564BN 0U60DN SP503AN
Product Description
Full Text Search
 

To Download IRF840A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD- 91900A
SMPS MOSFET
IRF840A
HEXFET(R) Power MOSFET
Applications l Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply l High speed power switching Benefits Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current l Effective Coss Specified (See AN1001)
l
VDSS
500V
Rds(on) max
0.85
ID
8.0A
TO-220AB
G DS
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw
Max.
8.0 5.1 32 125 1.0 30 5.0 -55 to + 150 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V V/ns C
Typical SMPS Topologies:
l l l
Two Transistor Forward Haft Bridge Full Bridge 1
7/7/99
www.irf.com
IRF840A
Static @ TJ = 25C (unless otherwise specified)
Parameter Min. Drain-to-Source Breakdown Voltage 500 V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient --- RDS(on) Static Drain-to-Source On-Resistance --- VGS(th) Gate Threshold Voltage 2.0 --- IDSS Drain-to-Source Leakage Current --- Gate-to-Source Forward Leakage --- IGSS Gate-to-Source Reverse Leakage --- V(BR)DSS Typ. --- 0.58 --- --- --- --- --- --- Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.85 VGS = 10V, ID = 4.8A 4.0 V VDS = VGS, ID = 250A 25 VDS = 500V, VGS = 0V A 250 VDS = 400V, VGS = 0V, TJ = 125C 100 VGS = 30V nA -100 VGS = -30V
Dynamic @ TJ = 25C (unless otherwise specified)
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 3.7 --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- --- --- --- 11 23 26 19 1018 155 8.0 1490 42 56 Max. Units Conditions --- S VDS = 50V, ID = 4.8A 38 ID = 8.0A 9.0 nC VDS = 400V 18 VGS = 10V, See Fig. 6 and 13 --- VDD = 250V --- ID = 8.0A ns --- RG = 9.1 --- RD = 31,See Fig. 10 --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz, See Fig. 5 --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 400V, = 1.0MHz --- VGS = 0V, VDS = 0V to 400V
Avalanche Characteristics
Parameter
EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Typ.
--- --- ---
Max.
510 8.0 13
Units
mJ A mJ
Thermal Resistance
Parameter
RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Typ.
--- 0.50
Max.
1.0 --- 62
Units
C/W
Diode Characteristics
Min. Typ. Max. Units IS
I SM
VSD t rr Q rr ton
Conditions D MOSFET symbol --- --- 8.0 showing the A G integral reverse --- --- 32 S p-n junction diode. --- --- 2.0 V TJ = 25C, IS = 8.0A, VGS = 0V --- 422 633 ns TJ = 25C, IF = 8.0A --- 2.0 3.0 C di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRF840A
100
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
10
10
4.5V
1
1
4.5V
20s PULSE WIDTH TJ = 25 C
1 10 100
0.1 0.1
0.1 0.1
20s PULSE WIDTH TJ = 150 C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.0
8.0 ID = 7.4A
R DS(on) , Drain-to-Source On Resistance (Normalized)
I D , Drain-to-Source Current (A)
2.5
10
TJ = 150 C
2.0
TJ = 25 C
1
1.5
1.0
0.5
0.1 4.0
V DS = 50V 20s PULSE WIDTH 5.0 6.0 7.0 8.0 9.0
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF840A
100000
20
VGS , Gate-to-Source Voltage (V)
10000
VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + Cgd ds
8.0 ID = 7.4 A
16
V DS = 400V V DS = 250V V DS = 100V
C, Capacitance(pF)
1000
Ciss
12
100
Coss
8
10
Crss
4
1 1 10 100 1000
0 0 10 20
FOR TEST CIRCUIT SEE FIGURE 13
30 40
VDS, Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
100
OPERATION IN THIS AREA LIMITED BY RDS(on)
ISD , Reverse Drain Current (A)
10us
10
TJ = 150 C
I D , Drain Current (A)
10 100us
1ms 1 10ms
1
TJ = 25 C
0.1 0.2
V GS = 0 V
0.5 0.8 1.1 1.4
0.1
TC = 25 C TJ = 150 C Single Pulse
10 100 1000 10000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF840A
8.0
V DS VGS
RD
D.U.T.
+
I D , Drain Current (A)
6.0
RG
-V DD
10V
4.0
Pulse Width 1 s Duty Factor 0.1 %
Fig 10a. Switching Time Test Circuit
2.0
VDS 90%
0.0 25 50 75 100 125 150
TC , Case Temperature
( C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
10
Thermal Response (Z thJC )
1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 P DM t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.1 1
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF840A
1 5V
1200
EAS , Single Pulse Avalanche Energy (mJ)
TOP BOTTOM
1000
VDS
L
D R IV E R
ID 3.6A 5.1A 8.0A
800
RG
20V tp
D .U .T
IA S
+ V - DD
A
600
0 .0 1
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS tp
400
200
0 25 50 75 100 125 150
Starting TJ , Junction Temperature ( C)
IAS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
QGS VG QGD
V DSav , Avalanche Voltage ( V )
600
610 600 590 580 570 560 550 540 0.0 1.0 2.0 3.0 4.0 5.0 6.0
580
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
560
50K 12V .2F .3F
540
D.U.T. VGS
3mA
+ V - DS
520 0.0 1.0
V DSav , Avalanche Voltage ( V )
I , Avalanche Current ( A) 2.0 AV 3.0 4.0 5.0 6.0 7.0
8.0
IAV , Avalanche Current ( A)
IG ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current
6
www.irf.com
IRF840A
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
-
+
RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
+ V DD
Driver Gate Drive P.W. Period D=
P.W. Period VGS=10V
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
VDD
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRF840A
Package Outline
TO-220AB Outline Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A 6.47 (.255) 6.10 (.240) -B 4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LE AD A S SIG NME NT S 1 - GA TE 2 - DR A IN 3 - S OU RCE 4 - DR A IN
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X N OT ES : 1 DIMEN S IONING & T OLE R AN CIN G PE R A NS I Y14.5M, 1982. 2 CO NT RO LLING D IMEN S ION : IN CH
2.92 (.115) 2.64 (.104)
3 OUT LINE C ONF O RMS T O JED EC O UT LIN E TO -220A B. 4 HE A TS IN K & LE A D ME AS UR E MEN TS D O NO T INC LU DE B U RRS .
Part Marking Information
TO-220AB
E X A M P L E : T H IS IS A N IR F 1 0 1 0 W IT H A S S E M B L Y LOT CODE 9B1M
A
IN T E R N A T IO N A L R E C T IF IE R LOGO ASSEMBLY LOT CO DE
PART NUMBER IR F 1 0 1 0 9246 9B 1M
D ATE C ODE (Y Y W W ) Y Y = YE A R W W = W EEK
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Pulse width 300s; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
Starting TJ = 25C, L = 16 mH
RG = 25, IAS = 8.0A. (See Figure 12)
ISD 8.0A, di/dt 100A/s, VDD V(BR)DSS,
TJ 150C
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 7/99
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF840A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X